The California Demonstration Program for Control of PM from Diesel Backup Generators (BUGs)

Back-up-Generators – to Use or Not to Use

California Energy Commision Sacramento, California October 6, 2004

Wayne Miller, David R. Cocker III, Kent Johnson, John Lee, Marla Mueller, Sandip Shah, Bonnie Soriano,

Supporting contributors: Kathalena Cocker, Jim Lents, Don Pacocha,, Alex Santos, Peggy Taricco

University of California, Riverside
Bourns College of Engineering
Center for Environmental Research and Technology

Today's Topics

- Current state of understanding about emissions from diesel backup generators.
- Background on California PM demonstration program for diesel backup generators.
- Approach to measurement of PM emissions
- Emission results for:
 - Uncontrolled sources
 - Controlled sources

EPA's AP-42 Emission Factors

	Small Engine	es (<440 kW)	Large Engines (>440 kW)		
Pollutant	Factor (g/kW-hr)	Rating	Factor (g/kW-hr)	Rating	
NO_x	18.8	D	14.952	В	
СО	4.06	D	3.34	С	
CO_2	704	В	705.28	В	
PM_{10}	1.34	D	0.426	В	
HC exhaust	1.50	D			
TOC as CH ₄			0.429	С	
Aldehydes	0.28	D	0.07	Е	

Objectives for California Diesel Backup Generator (BUGs) Project

- Cooperative project of the California Energy Commission and the California Air Resources Board
- Measure emissions from representative BUGs based on:
 - Size (>300kW)
 - Market share
 - Age/emission standards
- Measure "real world" emissions
 - Regulated gaseous emissions
 - Regulated particulate matter (PM) emissions
 - Speciated VOCs and SVOCs, including toxics for selected units
- Develop emission factors for BUGs.
 - Uncontrolled and controlled emission factors.

PM Demonstration-Test Matrix

Size Ranges

- 12 engines (300 to 750 kW)
- 3 engines (1000 to 2000 kW)

Age Ranges

- Pre 1987
- 1987-1996
- Post 1996

Manufacturers

- Caterpillar
- Cummins
- Detroit Diesel Corporation

PM Control Technologies Selected for Demonstration

- Emulsified Fuel
- Fuel-borne Catalysts
- Diesel Oxidation Catalysts
- Passive Filters
- Active Filter

UCR's Mobile Emission Lab

Schematic of UCR's Heavy-duty Mobile Emission Laboratory (MEL)

Gas Measurements: CO_2 %, O_2 %, CO ppm, NO_x ppm, THC ppm, CH_4 ppm.

Other Sensor: Dew Point, Ambient Temperature, Control room temperature, Ambient Baro, Trailer Speed (rpm), CVS Inlet Temperature. Dilution Air: Temperature, Absolute Pressure, Throat ΔP , Baro (Ambient), Flow, Dew Point (Ambient). Exhaust: Temperature, ΔP (Exhaust-Ambient), Flow.

Engine Broadcast: Intake Temperature, Coolant Temperature, Boost Pressure, Baro Pressure, Vehicle Speed (mph), Engine Speed (rpm), Throttle Position, Load (% of rated).

Schematic of Secondary Sampling System

Inside the Mobile Laboratory

Field Issues

- Identify participating sites
- Survey site to assess acceptability of BUG
- Fabricate parts & connect BUG to HDD lab.
- Install load bank & set operating modes
- Undertake QA/QC procedures
 - Primary & secondary tunnels
 - Analytical bench instruments

Testing Protocol for Backup Generators

- 1. Cold start/idle for 30 minutes
- 2. ISO-8178B -- Type D2 constant speed

Mode	1	2	3	4	5
Speed	rated speed				
Load	100%	75%	50%	25%	10%
Weighting					
Factor	0.05	0.25	0.3	0.3	0.1

Example:
$$GAS_x = \frac{\sum_{i=1}^n M_{GASi} \times W_{Fi}}{\sum_{i=1}^n P_i \times W_{Fi}}$$

Where: GAS_x = overall emission factor of a given pollutant (lb/hp-hr or g/kW-hr)

 M_{GASi} = emission factor of given pollutant at Mode i

 P_i = load value at Mode i + auxiliary loads

Gaseous Emissions at Cold-Start for a for BUG

Cold Start Emissions for the Detroit 92 at VAF

NOx & PM Emissions Factors for Uncontrolled BUG

NOx Emission Factors from Uncontrolled BUGs

AP-42= 18.8 & 14.95 g//kW-hr

Certification: T1 = 9.2, T2= 6.4

PM Emission Factors from Uncontrolled BUGs

AP-42= 1.34 & 0.43 g//kW-hr

Certification: T1 = 0.54, T2= 0.20

Comparison of Filter Mass by ISO & M5 Methods

Reducing PM Emissions for a CAT-3406C with a Diesel-water Emulsion

Reducing PM Emissions for a CAT-3406B with a Diesel-water Emulsion

University of California at Riverside					
Emissions with Contant and Durability T	resting				
	— Center for Environmental Research and Technology				

Recommended Durability Test Cycle for an Emergency Standby Generator

- Part 1: Simulated Maintenance for Emergency Standby Generator
 - ✓ Cold-start engine and run engine at no-load for no more than 1 hour.
 - ✓ Shutdown engine and cool until engine reaches cold-start conditions
 - ✓ Run these tests consecutively and repeat 24 times.
- Part 2: Simulated Operation
 - A. Low-Load Operation
 - A. Run engine at low-load (25%) for a total of 24 hours.
 - **B.** Mid-Load Operation
 - A. Run engine at mid-load (65%) for a total of 24 hours.
 - C. High-Load Operation
 - A. Run engine at high-load (80%) for a total of 24 hours.

Temperature Profiles for a Maintenance Cycle

Cold Start Temp Profile for a 3406C CAT BUG

Diesel Oxidation Catalyst

Reducing PM & NOx Emissions for a CAT 3406C Engine with a Diesel Oxidation Catalyst

Reducing PM & NOx Emissions for a 2-Stroke Engine (6V92) with a Diesel Oxidation Catalyst

Passive Diesel Particle Filter

Control of a CAT 3406C with a Diesel Particulate Filter(DPF)

Active Diesel Particle Filter System

Center for Environmental Research and Technology

Overview of Control Technology

- Fuel emulsions reduced PM \sim 70% and NO $_x$ by 13% for newer engines. PM was reduced 25% and NO $_x$ by 4% for older engines.
- Diesel oxidation catalysts (DOC) removed 5-20% of the PM for a model year 2000 engine with "dry soot" and up to 45% for a 1980's 2-stroke engine.
- Passive diesel particulate filters (DPF) removed over 91% of the PM but increased NO₂ levels.
- Active traps removed up to 98% PM without generating NO₂.
- A fuel borne catalyst plus DOC removed 44% of the PM with a 2-stroke engine and 99.7% of the PM from a new engine with a lightly loaded DPF.

Conclusions

- Results showed that in-use NO_x and PM emission factors for the uncontrolled BUGs were less than in the AP-42 tables.
- BUGs from the same engine family had the same emission values in the field tests.
- With control technology, PM emissions can be reduced from 5% to 99.8+%. Selection depends on a number of factors, including PM characterization.
- On-going: we are working with EPA to transfer the BUGs results to AP-42.

Thank You Sponsors!

- US Environmental Protection Agency (US EPA)
- California Air Resources Board (CARB)
- California Energy Commission (CEC)
- South Coast Air Quality
 Management District (AQMD)
- Detroit Diesel Corporation
- International Truck & Engine

- Caterpillar
- Cummins
- Mack
- Volvo